
STUDY OF HYDRAULIC RESISTANCES IN THE PISTON FLOW OF MIXTURES 

OF AIR WITH LIQUIDS OF DIFFERENT VISCOSITIES 

N. N. Elin and V. G. Arsenov UDC 532.529.5 

A semiempirical method is proposed for calculating the hydraulic resistance of 
a two-phase piston flow. 

The engineering methods used to calculate the piston flow of a gas--liquid mixture are 
based on empirical relations with different structures, these relations describing the de- 
pendence of integral quantities on physical and flow-rate parameters of the flow [1-4]. 
This situation prevails because, until now, the main method of studying two-phase flows has 
been the empirical method. 

The substantial volume of data which has now been accumulated on the characteristics of 
piston flows makes it possible to perform engineering calculations with good accuracy in some 
cases. However, in those cases where the actual physical properties of the components of the 
mixture differ appreciably from those in the experiment, the discrepancy between the theoret- 
ical data and empirical results becomes so great as to render the models used unfit for 
practical calculations. It then becomes necessary to conduct further studies of piston flow 
within a broad range of variation in the physical properties of the mixture components, par- 
ticularly for laminar flow of the liquid phase. There are no such results in the literature 
except for [i], where the data are presented in such a form that their practical use is almost 
impossible. 

In the present work, experimental studies were conducted with the movement of a mixture 
of air with liquids of different viscosity in a horizontal glass tube with an inside diam- 
eter d = 13 mm and a length I = 6.7 m. The liquid component of the mixture was alternately 
water ~I = 1"10 -3 N'sec/m 2, diesel fuel ~I = 3.6"10 -3 N'sec/m 2, "Veretennoe AU"-grade oil 
~: = 41.9.10 -~ N.sec/m 2, and two concentrations of solutions of this oil in diesel fuel ~ = 
21.ioi0 -s and ~ = i0.i0 -3 N.sec/m 2. Several series of tests were conducted for each viscos- 
ity of the liquid phase. With a fixed value of the Froude number of the mixture Frc = Uc2/gd 
in each test, the volumetric discharge gas content B2 was varied from 0 to i. 

The actual volumetric phase concentrations ~i and ~2 were measured by themethod of cut- 
ting the testing unit off from the main. The distance between the cutoffs was 4.16 m. The 
first pressure sampling in the flow direction was located 3.07 m from the mixer. It should 
be noted that the results of these experiments agreed well with the empirical relation in [3]. 

The pressure drop was measured with a U-shaped water-column gauge. Separating vessels 
were used to keep water out of the impulse lines for sampling pressure. The distance between 
the pressure samplings was 1.355 m. The results obtained were analyzed by different methods 
and compared with calculated values. For the comparison, we chose the methods which have 
been most widely used in engineering practice: that of Martinelli [I], the standard method 
of the I. I. Polzunov Central Scientific Research, Planning, and Design Boiler and Turbine 
Institute (TsKTI) [2], the method in [3], and the method of Armand [4]. 

The results of calculations in [i, 3, 4] for the movement of an air-water mixture and a 
mixture of air and diesel fuel are in satisfactory agreement with the experimental data. In 
our opinion, this is due to the fact that the flow of the liquid phase at a rate equal to 
the flow rate of the mixture is turbulent in these cases, and the empirical relations in [2- 
4] were obtained specifically for this case. As regards the method of [i], this study exam- 
ined three possible variants: turbulent flow of the gas and liquid, laminar flow of the li- 
quid and turbulent flow of the gas, and laminar flow of the liquid and gas. 
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Fig. i. Comparison of experimental data 
with a liquid-phase viscosity ~, = 41.9. 
i0 -s N.sec/m = against results calculated 
by Martinelli's method [i] (dot-dash 
curves) and the method in [3] (solid 
curves): i) Frc = 0.4; 2) I; 3) 2; 4) 4; 
5) 8. dP/dx, Pa/m. 

Figure i compares experimental and theoretical values of the pressure gradient calcu- 
lated by the methods in [i, 3]. They agree satisfactorily with the results calculated by 
Martinelli's method (laminar--laminar flow). 

The method in [3] is based on the assumption of a linear decrease in the pressure 
gradient with an increase in the discharge gas content, an assumption which is quite justi- 
fied for turbulent flow of the liquid phase. In laminar flow, this linear relation no 
longer holds, and the empirical points are located above the theoretical curve. The causes 
of the deviation of the experimental data from the theoretical results obtained by the meth- 
od in [3] should be looked for in the principle of analyzing the test data in the form of 
corrected resistance coefficients: 

= ~c / ~o, (i) 

where ~o is determined by the Reynolds number of the mixture Re c = Ucd/~ c (1/~ c = ~I/~I + 
B2/~2) and the relative roughness ke/d. The coefficient of hydraulic resistance of the mix- 
ture %c is determined through the actual dynamic head: 

dz 2d \~h Ptq- eh /U~" (2) 

To calculate ~, it is suggested that an empirical formula having the following form for the 
case 0, >> 02 be used 

Xo ~, (3) 

where  Xl i s  c a l c u l a t e d  f r o m  t h e  R e y n o l d s  c r i t e r i o n  Re,  ffi U c d / u l  and  t h e  r o u g h n e s s .  

Such an analysis presumes that the effect of the viscosity of the liquid phase on ~c is 
completely accounted for by the value of ~o (through the value of Rec). This assumption is 
valid in the region of high Reynolds numbers, when ~o depends mainly on the roughness and 
remains nearly constant for the given tube throughout the region of the test parameters. At 
low to moderate values of Rec, the value of ~o usually changes appreciably. This cannot be 
reflected in a change in %c. Also, the very determination of Re c with respect to "additive 
viscosity" is quite tentative and does not have a clear physical meaning. 

In accordance with the standard method of the All-Union Institute of Heat Engineering 
(VTI) and the TsKTI, the pressure loss due to friction is calculated for a two-phase flow 
from the formula 

Apc/ Apo = 1 + Cx2(pl/p~-- 1), (4) 

where Apo is the pressure loss to friction in the movement of a liquid with the same mass 
rate; x2 is the mass discharge gas content; C is a coefficient determined from nomograms. 
For the case of atmospheric pressure, C ffi 1.5. 
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Fig. 2. Comparison of test data with results calculated by the TsKTI method 
[2] (solid lines): i) p, = i.i0 -3 N.sec/m2; 2) 3.6.10-3; 3) 10.10-3; 4) 21.1o 
10-3; 5) 41.i.i0-3o 

Fig. 3. Fig. 3. Comparison of experimental data with results calculated by the 
method of Armand [4] (solid curve): i) ~i = 1"10 -3 N'sec/m2; 2) 3.6,10-3; 3) 
10,10-3; 4) 21.1,10-3; 5) 41.9,10 -3 . 

The analysis of our data by the method in [2] is presented in Fig. 2. The layering of 
the test points for viscosity is noticeable. An increase in ~, leads to a decrease in the 
ratio Apc/APo. The same figure shows results of calculations with Eq. (4). It is evident 
that the test and calculated data diverge a great deal, especially for similar liquid vis- 
cosities. 

Figure 3 shows the results of analysis of our data by the method of Armand [4] in the 
coordinates TC/Te, ~2" The theoretical curve (solid line) corresponds to the empirical form- 
ula 

~oI%= l l ~ i  "42 
(5) 

where to is the friction on the tube wall in the movement of a uniform liquid at a velocity 
equal to its corrected velocity in the two-phase flow. 

The discrepancy between the test and calculated data is explained by the effect of the 
viscosity of the liquid phase on the true volumetric liquid content ~i . At the same time, 
as in all of Armand's tests -- which were the basis for the derivation of (5) -- we took 

~ - 0 . 8 3 3 ~ ,  (6 )  

w h i c h  c o r r e s p o n d s  t o  t h e  f l o w  o f  a n  a i r - ~ a t e r  m i x t u r e .  

T h u s ,  t h e  m e t h o d s  o f  c a l c u l a t i n g  t h e  r e s i s t a n c e  t o  t h e  p i s t o n  f l o w  o f  a t w o - p h a s e  m i x -  
t u r e  u s e d  h e r e  a r e  l i m i t e d  t o  t h e  r a n g e  o f  p h y s i c a l  p r o p e r t i e s  o f  t h e  m i x t u r e  c o m p o n e n t s  i n  
w h i c h  t h e  e x p e r i m e n t s  on w h i c h  t h e  m e t h o d s  a r e  b a s e d  w e r e  c o n d u c t e d .  Some o f  t h e m ,  h o w e v e r ,  
make it possible to perform calculations with satisfactory accuracy [i, 3]. 

The most universal and substantiated method of calculating a two-phase flow can be 
created by means of the semiempirical method of investigation. The changeover from empirical 
methods to semiempirical theories in the study of uniform liquids was a new stage in the de- 
velopment of hydrodynamics. However, the theoretical formulas obtained by the semiempirical 
approach do not improve the accuracy of the calculations in most cases, but they are more 
physically substantiated, contain a minimum number of empirical coefficients, and are the 
most universal, i.e., they can be used in a broader range of flow parameters. 

In recent years there have appeared works in which the aim was to develop a semiempirical 
theory for two-phase flows [5, 6]; a brief look is taken at their characteristics in [7]. 
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The study [7] proposed the hypothesis of "large-scale mixing length" for a piston gas-- 
liquid flow. It examined the case when the motion of the carrying phase (the liquid) is 
turbulent. The components of the shear-stress tensor are represented in the form of the sum 
of two terms -- small-scale and large-scale. The small-scale component is calculated by means 
of familiar semiempirical theories on the turbulence of a uniform liquid, while an additional 
hypothesis was proposed to calculate the large-scale component. The essence of this hypoth- 
esis is that additional "large-scale" mixing occurs with the movement of gas occlusions 
(plugs) relative to the surrounding liquid. This additional mixing results in large-ampli- 
tude, low-frequency pulsations of the hydrodynamic quantities, which in turn leads to the 
appearance of an additional term of the form U g ~  in the expression for the shear stresses 
and, thus, to an increase in the coefficient of hydraulic resistance of the two-phase mixture. 

We will attempt to use the method developed in [7] to analyze piston two-phase flow in 
the case of laminar flow of the carrying phase. 

Assuming that the gas occlusions move as undeformable cavities and that there are no 
shear stresses in them, we write the equation for the shear stress: 

where at is the probability of existence of liquid at a given point (local concentration). 
The value of T m will be calculated using the familiar law of viscous flow 

dul 
�9 m = ~i ~ (8) dg 

We represent the large-scale component of shear stress in a manner similar to [7] : 

where~g is the "large-scale viscosity," due 
passage of the gas occlusion. 

d (u 1 -- uz) (9) 
dy 

to the additional mixing that occurs with the 

The probability of existence of the gas phase a2 enters into Eq. (9) because the large- 
scale stresses appear only with the passage of the gas phase through the flow section being 
examined [7]. 

Since we are examining gaseous occlusions in the form of undeformable cavities, the 
velocity of the gas phase across the flow does not change and is equal to its own mean value 
u2 = U2. With allowance for this, Eq. (7) takes the form 

T = ~1-~c (Bl+%B#d{uc ul ] dy. (10) 

I f  we use the u sua l  premise [5] r ega rd ing  the s i m i l i t u d e  of the  v e l o c i t y  p r o f i l e  of the  
liquid phase and the local-concentration profile of the gas phase u,/U, = a2/~, as well as 

the familiar relations Ul=e-~!Uc, U2=e-~tUc. it is easily shown that the dimensionless veloc- 

ity profiles of the liquid phase anH the mixture u,/Ux and uc/U c are similar: 

Uo= Vo 
It is not hard to see that the factor in the parentheses differs little from unity, 

since, with piston flow of the mixture, the local concentration of the liquid changes little 
across the flow. Thus, u,/Ux = uc/U c, and Eq. (i0) takes the form 

duc _ 
~x d y  " (12) 

Following [7] and r e p l a c i n g  the p r o b a b i l i t y  of e x i s t e n c e  of the  phases az and au by the  mean 
va lues  across  the f low ~1 and ~ ,  we f i n a l l y  ob ta in  

'~ = ~1 (~ + ~ duo d y "  (13) 

Determining the coefficient of hydraulic resistance of the mixture through the actual dynamic 
head (2), we integrate (13) and by the usual method [8] obtain the formula for calculating Xc: 
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Fig. 4. Comparison of experimental data with semiempirical relation (14) 
(solid curves): i) Frc = 0.4; 2) i; 3) 2; 4) 4; 5) 8; 6) 16 (a -- p~ = 
41.9.10 -~ Nosec/m =, b -- 21.1.10 -3 , c -- I0oi0-3). 

%o 64 q)l ( 1 _~_ q ) 2 ~ )  . 
1~el ~1 (14) 

Comparison of this expression with our test data showed good agreement when ~g/~1 = i for all 
liquid viscosities. As an example, Fig. 4 shows results of such a comparison for three values 
of liquid-phase viscosity. The values of @i and @2 needed for calculation with Eq. (14) were 
taken from our measurements. 

It is very interesting to compare derived relation (14) with the method of calculating 
two-phase flows based on the concept of the effective viscosity of a mixture. Einstein's 
formula for the effective viscosity of a mixture with gas bubbles takes the form [9]: 

~ef = ~1( 1 + ~2). (15) 

Both methods give the same results when the concentration of the gas phase is low and the dif- 
ference between the volumetric and actual phase concentrations is not great. With an increase 
in gas content, the hydraulic resistance calculated from Eq. (14) increases considerably more 
rapidly than the value obtained from Eq. (15). The rapid increase in effective viscosity com- 
pared to the values calculated with Eq. (15) was observed experimentally in the case of the 
motion cf suspensions [9]. 

Thus, the proposed semiempirical method has made it possible to obtain a theoretical 
formula which contains only one unknown pg/pl, and this unknown proved to be constant through- 
out the entire range of mixture velocities and liquid-phase viscosities. 

NOTATION 

U, mean velocity across the flow, m/sec; u, longitudinal component of velocity, m/sec; 
p, pressure, Pa; v, transverse component of velocity, m/sec; ~, shear stress, N/mU; 0, dens- 
ity, kg/m3; p, absolute viscosity, N.sec/m=; 9, kinematic viscosity, m2/sec; l, length, m; 
d, inside diameter of tube, m; ke, equivalent roughness, m; z, coordinate (on tube axis), m; 
y, coordinate (distance from tube wall), m; ~, volumetric discharge concentration of the 
phase, dimensionless; ~ , true volumetric phase concentration, dimensionless; x, mass dis- 
charge phase concentration, dimensionless; %, coefficient of hydraulic resistance, dimension- 
less; ~, corrected coefficient of hydraulic resistance, dimensionless; C, coefficient in Eq. 
(4). Indices: i, liquid; 2, gas; c, mixture; o, single-phase; m, laminar; g, large-scale. 
A bar denotes an average over time; ' denotes the fluctuation component. Criteria: Fr, 
Froude; Re, Reynolds. 
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HEATING OF A MICROPOLAR LIQUID DUE TO VISCOUS ENERGY DISSIPATION 

IN CHANNELS. i. POISEUILLE FLOW 

N. P. Migun and P. P. Prokhorenko UDC 536.24:532.032 

An analytical study is made of the effect of the internal microstructure of a 
liquid on its heating due to viscous energy dissipation. 

In its different forms, the theory of micropolar liquids (MPL) [i] is currently used 
for theoretically describing transfer processes in liquids with an internal microstructure: 
liquid crystals, magnetic liquids, certain suspensions, and associated liquids. However, a 
comparatively large number of transfer coefficients (material constants) which until recent- 
ly had no method of being determined are included in this theory. The studies [2, 3] pro- 
posed methods of determining differentparameters characterizing the internal microstructure 
of a liquid, For example, the method of determining the material constants of a liquid in 
[3] is based on measurement of heating of the liquid as a result of viscous energy dissipa- 
tion during Poiseuille flow in a plane channel in the case of constant channel-wall tempera- 
ture. 

The present work analytically solves a problem of the heating of an MPL flowing as a 
result of a fixed pressure gradient in the plane Channel. We set thermal boundary condi- 
tions more general than those in [3] and take into account the change in temperature through 
the thickness of the channel walls. A numerical analysis is made of the dependence of the 
temperature field in the liquid on quantities characterizing its micropolarity. The magni- 
tude of the dissipative heating of a liquid flowing in microcapillaries (h ~ 10 -5 m) is very 
small in the overwhelming majority of cases. However, we also have the goal of studying 
dissipative heating of the liquid under conditions where its value is sufficiently large for 
experimental determination (for example, with a pressure drop Ap = 20-40 atm). 

In the second article we will solve a similar problem for Couette flow with a pre- 
scribed constant relative velocity of the channel walls. The role of microrotations of par- 
ticles of the medium in the case of significant dissipative heating of the microstructural 
liquid is established for a broad range of practical instances, such as when two surfaces 
with an intervening liquid are moving at a comparatively high velocity relative to each 
other. 

Let us examine the stabilized flow of an incompressible micropolar liquid under the in- 
fluence of a constant pressure gradient dp/dx between parallel plates located a distance 2h 
from one another. The x axis of the Cartesian coordinate system coincides with the central 
line of the channel, while the y axis is perpendicular to the plates. In this case, the 
velocity vector ~ and the microrotation vector ~ only have nontrivial components vx(Y) and 
~z(Y), respectively. We will assume that the physical properties of the MPL are constant, 
i.e., we will ignore the effect of dissipative heating on them, as well as the body forces 
and their moments. Given these assumptions, the equations describing the flow of the MPL 
have the form 
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